Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microbes Infect ; : 105059, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2230619

ABSTRACT

The present cross-sectional study aims to explore the fungal community composition of the nasopharyngeal region of SARS-CoV-2 infected individuals and how the infection influences the mycobiome therein. The infection significantly (p<0.05) influenced the alpha diversity. Interestingly, a higher abundance of Cladosporium and Alternaria was noted in the infected individuals and inter-individual variation in mycobiome composition was well supported by beta dispersion analysis (p < 0.05). Moreover, decrease in Aspergillus abundance was observed in infected patients across the four age groups. This study provides insight into the alteration in mycobiome during the viral disease progression and demands continuous investigation to monitor fungal infections.

2.
Microbes and infection ; 2022.
Article in English | EuropePMC | ID: covidwho-2057878

ABSTRACT

The present cross-sectional study aims to explore the fungal community composition of the nasopharyngeal region of SARS-CoV-2 infected individuals and how the infection influences the mycobiome therein. The infection significantly (p<0.05) influenced the alpha diversity. Interestingly, a higher abundance of Cladosporium and Alternaria was noted in the infected individuals and inter-individual variation in mycobiome composition was well supported by beta dispersion analysis (p < 0.05). Moreover, decrease in Aspergillus abundance was observed in infected patients across the four age groups. This study provides insight into the alteration in mycobiome during the viral disease progression and demands continuous investigation to monitor fungal infections.

3.
Microbiol Res ; 261: 127055, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1819572

ABSTRACT

The human oral cavity harbours complex microbial communities with various commensal microorganisms that play pivotal roles in maintaining host health and immunity but can elicit local and systemic diseases. The role of commensal microorganisms in SARS-CoV-2 infection and disease susceptibility and enrichment of opportunistic pathobionts in the oral cavity is poorly understood. The present study aims to understand the altered landscape of the oral microbiome and mycobiome in SARS-CoV-2 infected patients (n = 30) and its correlation with risk factors compared to non-infected individuals (n = 24) using targeted amplicon sequencing. Diminution of species richness, an elevated abundance of opportunistic pathogens (Veillonella, Acinetobacter, Klebsiella, Prevotella, Gemella, and Streptococcus) and impaired metabolic pathways were observed in the COVID-19 patients. Similarly, altered oral mycobiome with enrichment of known respiratory disease causing pathogenic fungi were observed in the infected individuals. The data further suggested that reduction in immunomodulatory microorganisms lowers the protection of individuals from SARS-CoV-2. Linear discriminant analysis identified several differentially abundant taxa associated with risk factors (ageing and co-morbidities). We also observed distinct bacterial and fungal community structures of elderly infected patients compared to the younger age group members making them highly vulnerable to SARS-CoV-2 infection and disease severity. Furthermore, we also assessed the dynamics of the oral microbiome and mycobiome in symptomatic and asymptomatic patients, host types, co-morbidities, and viral load in the augmentation of specific pathobionts. Overall, the present study demonstrates the microbiome and mycobiome profiling of the COVID-19 infected individuals, the data further suggests that the SARS-CoV-2 infection triggers the prevalence of specific pathobiont.


Subject(s)
COVID-19 , Mycobiome , Aged , Dysbiosis/microbiology , Fungi , Humans , SARS-CoV-2
4.
Microbes Infect ; 24(1): 104880, 2022 02.
Article in English | MEDLINE | ID: covidwho-1364363

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is causing a severe global health emergency owing to its highly infectious nature. Although the symptoms of SARS-CoV-2 are well known but its impact on nasopharyngeal microbiome is poorly studied. The present cross-sectional study was intended to understand the perturbation in the nasopharyngeal microbiome composition within the infected (n = 63) and non-infected (n = 26) individuals using 16S rRNA gene based targeted amplicon sequencing and their association with host types and the prevalence of opportunistic pathogens at the stage of infection. The results confirmed that number of OTUs were significantly (p < 0.05) decreased in the SARS-CoV-2 infected individuals in comparison to non-infected individuals. Pairwise Wilcoxon test showed a significant (p < 0.05) increase in the abundance of Proteobacteria in infected individuals compared to non-infected ones and vice-versa for Fusobacteria and Bacteroidetes. Similarity percentage (SIMPER) analysis showed the increment in the abundance of opportunistic pathogens (Haemophilus, Stenotrophomonas, Acinetobacter, Moraxella, Corynebacterium 1, Gemella, Ralstonia, and Pseudomonas) involved in secondary infection. Furthermore, this study highlighted the microbial community structure of individuals within and across the families. In this study, we also performed the assesment of microbiome associated with host types (age and genders) and COVID-19 conditions (symptomatic and asymptomatic). The data suggested that the host types/conditions during the COVID-19 infection are potential factors in enrichment of specific bacterial communities in upper respiratory tract.


Subject(s)
COVID-19 , Microbiota , Cross-Sectional Studies , Female , Humans , Male , Prevalence , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
5.
Microb Ecol ; 82(2): 365-376, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293356

ABSTRACT

The unprecedented COVID-19 pandemic has had major impact on human health worldwide. Whilst national and international COVID-19 lockdown and travel restriction measures have had widespread negative impact on economies and mental health, they may have beneficial effect on the environment, reducing air and water pollution. Mass bathing events (MBE) also known as Kumbh Mela are known to cause perturbations of the ecosystem affecting resilient bacterial populations within water of rivers in India. Lockdowns and travel restrictions provide a unique opportunity to evaluate the impact of minimum anthropogenic activity on the river water ecosystem and changes in bacterial populations including antibiotic-resistant strains. We performed a spatiotemporal meta-analysis of bacterial communities of the Godavari River, India. Targeted metagenomics revealed a 0.87-fold increase in the bacterial diversity during the restricted activity of lockdown. A significant increase in the resilient phyla, viz. Proteobacteria (70.6%), Bacteroidetes (22.5%), Verrucomicrobia (1.8%), Actinobacteria (1.2%) and Cyanobacteria (1.1%), was observed. There was minimal incorporation of allochthonous bacterial communities of human origin. Functional profiling using imputed metagenomics showed reduction in infection and drug resistance genes by - 0.71-fold and - 0.64-fold, respectively. These observations may collectively indicate the positive implications of COVID-19 lockdown measures which restrict MBE, allowing restoration of the river ecosystem and minimise the associated public health risk.


Subject(s)
Bacteria/isolation & purification , Communicable Disease Control/legislation & jurisprudence , Ecosystem , Rivers/microbiology , Bacteria/classification , COVID-19/epidemiology , COVID-19/prevention & control , Drug Resistance, Bacterial , Environmental Monitoring , Hinduism , Human Activities , India/epidemiology , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL